药物转运体的研究方法 2022-02-10
Methods for the study of drug transporters
李 聃, 盛 莉 , 李 燕
北京协和医学院药物研究所药物代谢室
活性物质发现与适药化研究北京市重点实验室
位于细胞膜上的转运体是体内重要的功能性膜蛋白 , 在药物吸收、分布、代谢及排泄的动力学过程中发挥重要作用。
了解转运体的功能对阐明药物的体内药代动力学特征、药效及毒性具有重要意义。
正文
人体内参与药物跨膜的转运体种类众多 , 按底物跨膜转运方向可分为参与药物吸收和外排的两大类转运体。
介导药物进入细胞的转运体可将底物摄取至靶位以发挥药效, 属于可溶性载体 (solutecarrier, SLC),
寡肽转运体 (peptide transporters, PEPTs)、
钠非依赖性易化扩散转运体(sodium-independent facilitated diffusion transporters,GLUTs)、
有机阴离子 (organic anion transporters, OATs)
外排转运体:
P糖蛋白(P-glycoprotein, P-gp)、
乳腺癌耐药蛋白 (breast cancer resistance protein, BCRP)
属于ATP结合盒转运体 (ATP binding cassette, ABC) 家族, 可利用水解ATP的能量对药物及内源性物质进行转运。
多种药物已被证明是转运体的底物或抑制剂。
左旋溶肉瘤素等抗肿瘤药也可抑制肿瘤细胞LAT的活性。
根皮苷、达格列净则可通过抑制SGLT,阻断近曲小管对葡萄糖的重吸收。
他汀类、青霉素、甲氨蝶呤、缬沙坦等属于OATP1B1的底物,而环孢素、沙奎那韦、利福平及某些黄酮类化合物可抑制OATP1B1的转运功能。
OCT2的典型底物还包括雷尼替丁、阿米洛利和普萘洛尔,甲腈咪呱、西替利嗪均可显著抑制OCT2的转运活性。
MRP的底物包括多种抗癌药如甲氨蝶呤、依托泊苷、米托蒽醌及血管紧张素受体拮抗剂,环孢素、依法韦仑、恩曲他滨可抑制MRP对底物的外排功能。
上述转运体可不同程度地影响药物的吸收、分布、排泄及药物相互作用。
因此,转运体在药物研究中的重要性日益引起关注。
体外模型
体外细胞模型
细胞模型在药物发现阶段可用于确定药物是否为单一或多个转运体的底物或抑制剂、药物转运机制及跨膜转运的限速步骤。
1.1 不含重组转运体的细胞系
Caco-2细胞模型被认为是目前最理想的体外吸收模型,可作为快速评估新药吸收和转运特性的方法。
Shan等采用Caco-2细胞作为药物肠道吸收模型,研究P-gp抑制剂粉防己碱(tetrandrine,Tet)对黄连素(berberine,BBR)的吸收促进作用。
Transwell小室模型可测定药物经细胞的跨膜转运,反映药物肠道转运的渗透性。
通常吸收较差药物(<1%)的Papp<1×10−7cm·s−1,吸收为1%~100%的药物Papp为0.1×10−6~1×10−6cm·s−1,而吸收良好药物的Papp>1×10−6cm·s−1。
结果表明,在癸酸钠(200mmol·L−1)作用下,ZMR的Papp值高于对照组6倍,肠道渗透性显著提高。
此模型应用于预测药物被动转运相关性最为理想,只有部分载体介导主动转运药物可以用该模型预测。
1.2 原代细胞
原代细胞分离后需适应培养环境,以确保细胞适度生长,转运体恰当表达及定位。
HepaRG虽然保留了原代肝细胞的许多特征,包括关键药物代谢酶和转运体,但在培养一段时间后会丧失代谢及转运能力。
体外评价模型能够长期保持转运及代谢活性十分重要,因此原代肝细胞相对于HepaRG细胞更具优势。
游离肝细胞培养技术是研究转运体功能的另一重要手段。
Ishiguro等采用大鼠游离肝细胞证实了OATP参与替米沙坦的肝摄取,该过程是Na+依赖性且可被OATP底物兼抑制剂牛黄胆酸盐、普伐他汀和地高辛所抑制,但不能被有机阳离子四乙胺所抑制,说明多种OATPs可能参与替米沙坦的转运,OCTs则不参与。
与肝灌流技术相比,该技术可利用同源肝细胞进行重复实验,即对照组与实验组来源于同一动物,重复性好。
与亚细胞组分相比,保持了完整细胞的结构,更接近体内环境。尽管具有以上诸多优势,由于失去肝小叶、肝内胆管等结构,游离肝细胞不能完全替代整体动物转运体功能的评价。
体外培养原代BMECs可保留体内细胞的主要特点,如OATP及P-gp表达丰富,能在体外融合成致密的单层细胞等,因此可用于体外BBB转运体的研究。
血管内皮细胞在人体多种生理病理过程中发挥重要作用,通常选用原代脐静脉内皮细胞(human umbilical vein endothelial cells, HUVEs)进行转运研究。
1.3 三明治培养原代肝细胞模型
虽然原代肝细胞可模拟肝脏基本功能,然而传统方法培养的肝细胞会迅速丧失极性及代谢能力, 失去胆管网络, 难以模拟体内肝的小管外排功能。
培养几天后, 肝细胞形成完整胆小管网络并同时保持紧密连接, 且肝脏转运体正常表达并定位于恰当的膜区域, 可用于转运体功能研究。
因此, 通过在含Ca2+和无Ca2+条件下测定药物细胞蓄积量的差值可计算排入胆管的药量。
在P-gp抑制剂依克立达(GF120918)作用下两药的胆汁排泄率均减小, 且应用SCRH所得的胆汁清除率值与在体大鼠肝灌流、游离肝细胞实验所得数值基本吻合,由此确定P-gp在两药胆汁排泄中的作用。
通过比较有无调节剂的BEI和CLbile值可推断转运相互作用发生在基底侧还是胆小管膜, 进而阐明肝脏药物转运相互作用的潜在机制。
与目前常用的MDR1-MDCK、Caco-2等单层细胞模型相比,SCRH模型能更好地模拟体内环境,可同时考察转运体与药物代谢酶的相互作用。
1.4 转染细胞
转染细胞系可单独表达吸收和外排转运体,或者二者共表达。
构建过程包括将含目的基因片段的重组质粒转染至特定细胞,用G418进行筛选,挑选单克隆细胞后结合
Yang等分别用OAT4、OATP1A2、URAT1基因转染CHO及HEK293细胞,成功构建OAT4/CHO、OATP1A2/HEK293、URAT1/HEK293细胞模型, 研究3种转运体对底物全氟辛酸(pentadeca fluoro octanoic acid,PFO)的转运,发现OAT4和URAT1可参与PFO的吸收。
König等构建了MDCK-OCT1-MATE1、MDCK-OCT2-MATE1双转染细胞模型,并用相应的单转运体转染细胞作为对照,研究二甲双胍和甲基−苯基−吡啶阳离子(MPP+)的转运机制,证实OCT1、OCT2介导两个药物的摄取转运,而MATE1介导外排。
一般认为,单转染细胞通常缺乏内源性吸收或外排转运体,无法模拟药物分子跨膜转运的完整机制,而双转染细胞在一定程度上克服了这一缺陷。
对某些药物而言,药物相互作用的产生不仅来自转运体,而是药物代谢酶和转运体的共同作用,如外排转运体和CYP3A4协同降低共同底物的吸收。
双转染细胞系由于保留了转运体和代谢酶的高度协同作用,对转运体和药物相互作用的研究具有更高价值。
基于膜的体外模型
ATP水解法可用于研究某些底物和抑制剂与ABC转运体的相互作用。
此种分析方法简便易行, 可应用于高通量筛选, 批量分析与ABC转运体相互作用的化合物。
故该法一般不单独应用于ABC底物或抑制剂的筛选。
该模型将膜囊泡混悬于含药缓冲液中,模拟药物吸收,包括刷状缘膜囊泡(BBMV)、基底膜囊泡和外翻转囊泡模型。
将所得沉淀物重新混悬,得到囊泡,测定囊泡摄取的药物,模拟药物吸收。
BBMV和基底膜囊泡联合应用, 可以同时研究肠细胞顶侧膜和基底膜的转运。该方法实验时间短, 囊泡制备方便,适合新化合物早期高通量筛选。
囊泡外翻后, 转运体暴露在囊泡表面, 与药物共同温孵时, 转运体可以将药物转运到囊泡内, 测定囊泡内药物含量可反映转运体对药物的作用。
采用外翻转膜囊泡模型进行研究时, 分析体系需含有ATP再生系统以维持分析期内能量持续供应, 且应采用5'-AMP替代ATP的体系作为阴性对照。
此外, 药物直接作用于外翻转膜上的转运蛋白, 可检测药物的吸收而非外排, 计算吸收动力学参数, 用于目标转运体底物或抑制剂定量构效关系分析(quantitative structure activity relationship,QSAR)。
在对疏水性底物进行囊泡转运分析时,需先应用不同的排阻技术以减小背景干扰。
肾切片摄取模型
Liu等静脉注射顺铂诱导大鼠急性肾衰竭,应用肾切片模型研究JBP485改善急性肾衰竭的作用。
顺铂诱导大鼠给予JBP485后可降低肌酸酐、血尿素氮,恢复肾小球滤过率,促进毒性代谢产物排出。
肾切片模型可研究药物是否为肾脏转运体的底物,预测化合物的肾转运特点。
4
外翻肠囊模型是由刷状缘膜囊泡和体外小肠肠环培养技术发展而来。
分离得到的肠段可采用乳酸脱氢酶法或台盼蓝法对肠粘膜细胞活性进行评价。
Hamilton等应用外翻肠囊法对SGLT1进行了系统研究, 包括SGLT1的Na+依赖特性、抑制剂及Na+-K+-ATP酶在转运过程中的作用。
该方法实验条件易控,操作简单,经济实用且重复性好,被广泛应用于转运体转运机制、营养物质吸收及药代动力学的研究。
在体模型
在体器官灌流模型通过在灌流液中加入转运体的选择性抑制剂, 比较灌流液、组织器官或血浆中药物含量的差别, 考察转运体对药物的吸收或外排作用。
1
禁食大鼠胆管结扎并分离肠段,将插管与肠端相连并结扎,灌流管与插管连接后进行在体肠段灌流。
肠灌流可保持血液供应、肠道药物代谢酶的活性、神经及内分泌的完整性,可较好反映生理条件下药物在肠道吸收。
2
脑灌流模型用于研究药物经BBB及血眼屏障的转运机制,灵敏度极高,不但保持了器官的完整性、生理条件下的位置及状态,且避免了药物与血浆蛋白的结合及外围器官的代谢。
脑灌流模型手术完成后需以14C或3H标记的蔗糖进行短暂灌流,以检测BBB的完整性并计算血管容量。
灌流液中同时或单独加入P-gp、BCRP、MRP及OATP抑制剂的研究发现,P-gp及BCRP协同限制GLB入脑,另外可能还存在MRP4的外排转运,而OATP不参与GLB的转运。
在体肝灌流模型
You等采用大鼠在体肝灌流模型研究MTC-220在肝脏的转运机制, 当灌流液中加入OATP抑制剂利福平时, MTC-220的肝脏摄取率与对照组相比显著降低, 当灌流液中分别加入丙磺舒(MRP2抑制剂)、新生霉素(BCRP抑制剂)及维拉帕米(P-gp抑制剂)时, MTC-220的胆汁排泄率显著降低,
体内模型
基因敲除小鼠
mdr1a(−/−)小鼠限制药物脑部暴露量, 作用高于P-gp抑制剂伊维菌素100倍。
为证实P-gp及BCRP对共同底物的透过具有协同作用, Kodaira等将P-gp底物奎尼丁给予Bcrp(−/−)小鼠, BCRP底物丹曲林给予Mdr1a/1b(−/−)小鼠, 与野生型小鼠比较两药的脑、睾丸与血浆的浓度比(Cbrain/Cplasma,Ctestis/Cplasma)。
研究者进一步采用双基因敲除小鼠研究P-gp和BCRP共同底物埃替特罗、夫拉平度及米托蒽醌的外排作用, 3种底物在Mdr1a/1b(−/−)/Bcrp(−/−)小鼠体内的Cbrain/Cplasma及Ctestis/CplasmaMdr1a/1b(−/−)、Bcrp(−/−)小鼠有明显提高。
此外, 将各基因型缺陷小鼠的Cbrain/Cplasma及Ctestis/Cplasma分别与野生型进行比较,P-gp对共同底物的外排贡献大于BCRP。
①可阐明生理条件下的转运体功能,如对主要血液−组织屏障的保护作用;
③可用于多转运体协同作用的研究。
已有研究者对Mdr1a、Bcrp及Mrp2基因敲除小鼠在小肠、肝、肾、脑组织的基因表达及病理学改变进行了系统研究。
因此, 在应用基因敲除小鼠进行转运体功能研究时, 基因敲除引起小鼠代偿性功能改变进而导致药物代谢动力学的变化需引起关注。
随着研究者对转运体功能研究的重视, 会有更多类型的转运体基因敲除动物模型出现,进一步促进药物转运的研究。
2
体内实验方法除采用普通动物与基因敲除动物作对比实验外, 也常用选择性抑制剂抑制转运体功能,达到“敲除”转运体的目的, 考察药物在抑制剂组和对照组动物体内吸收和代谢差别,从整体动物水平研究转运体对药物的作用。
结果显示,BCRP对TPT的外排能力是P-gp的3倍。
3
动物活体成像技术是在不损伤动物的前提下,应用影像学方法对生物过程进行组织、细胞和分子水平的定性定量研究。
其中光学成像和核素成像的灵敏度和精确性极高,特别适合研究药物代谢和转运等生理过程,称为功能成像。
研究肿瘤细胞中BCRP及P-gp功能时,PET技术较为常用。
当给予抑制剂时,[11C]GF120918的摄取率显著提高,由此证实GF120918在肿瘤细胞中的转运是经P-gp和BCRP转运体所介导。
荧光技术采用荧光染料(包括荧光量子点)或荧光报告基因(GFP、RFP)等纳米标记材料进行标记,利用荧光蛋白质或染料产生的荧光、报告基因产生的生物发光可形成体内生物光源。
可见光成像具有无辐射、使用低能量、实时监测活体生物体内细胞活动和基因行为,对信号检测灵敏度高等优势。
结 语
本文将目前常用的转运体研究技术进行分类介绍并归纳各自优缺点(表1), 研究者在对某一转运体进行研究时需综合考虑各方面因素, 选取适合的方法。
随着新药研发新技术的出现、分子生物学及计算机技术的发展,会有更多、更高效、灵敏的转运体研究方法出现, 对了解新化合物的体内过程、结构修饰、转运体所介导的药物相互作用、提高药物生物利用度、降低药物不良反应及临床合理用药提供更为全面科学的依据。
来源:药学学报
IPHASE/汇智和源致力于为创新药研发企业及生命科学研究机构提供高品质的生物试剂,主要产品包括ADME产品,空白生物基质,遗传毒性试剂,磁珠分选试剂盒,原代细胞,重组蛋白,抗体等。
购买方式:
电话:400-127-6686
微信:直接扫描右侧微信二维码添加购买